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Abstract—In this paper, the nonorthogonal finite difference

time domain (FDTD) technique is used to compute the resonant

frequencies of dielectric-filled cylindrical cavities. Because the
method is based on the nonorthogonal coordinate system, it is
not restricted to specific geometries, e.g., rectangular or axially
symmetric geometries and is suitable for analyzing cavities of
arbitrary shape. The advantages of this technique over the con-
ventional FDTD algorithm with a staircase grid are readily
shown in a convergence study, where the two methods are used

to compute the domimant resonant frequency of a cylindrical

cavity, The accuracy of the technique for calculating the reso-
nant frequencies of the first few modes is demonstrated by com-

paring the results obtained via this technique with those de-
rived by using two versions of the finite element method in the

frequency domain.

I. INTRODUCTION

A CCURATE analysis of the resonant frequencies of

dielectric-filled cavities is an important area of study

since such cavities are used in many microwave applica-

tions, e.g., filter and oscillator design as well as charac-

terization of dielectric materials. By placing the material

in question in a cavity and measuring the resonant fre-

quencies and the Q factors, the complex permittivity can

be obtained. For these and other applications, it would be

very useful to be able to analyze cavities of arbitraty shape

with arbitrary fillings. This paper proposes to use the non-

orthogonal-FDTD method for the analysis of cavities of

arbitrary shape and applies the method to the analysis of

dielectric filled cavities [1]-[4] as a demonstration of the

technique.

The nonorthogonal-FDTD method has been success-

fully applied to the analysis of two-dimensional electro-

magnetic wave scattering and three-dimensional wave-

guide discontinuities [1]-[3]. It is a very general method,

capable of analyzing arbitrarily-shaped structures and ma-

terials with inhomogeneities, anisotropy, nonlinearities

and losses. Since it is based on the nonorthogonal coor-

dinate system, the grid can be chosen to conform to the
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geometry of the problem, and its density can be varied as

necessary. This in turn, has the potential of saving much

computer memory and time over the conventional FDTD

algorithm [5] which requires that the grid retain its rec-

tangular, orthogonal structure and that the cell density be

essentially uniform throughout the entire computational

domain [1], [2], [5], [6]. These restrictions create prob-

lems when applying the conventional FDTD technique to

structures with curved boundaries because either the grid

must be carefully modified or the staircase approximation

must be incorporated [3], [6]. In addition, the grid cell

size must be compatible with small but significant fea-

tures of the structure under consideration like the tuning

screws of resonators. These two difficulties prohibit the

application of the conventional FDTD technique to many

stntctures of interest because of the resultant dense mesh

which requires extensive computer memory and the cor-

responding small time step that can cause the algorithm

to be highly time-consuming.

The order of presentation in this paper is as follows.

Section II outlines the theory of the nonorthogonal FDTD

which has been included primarily for completeness, since

more detail is available elsewhere [1]–[4]. Section III pre-

sents a convergence study in which the staircase-grid

FDTD is compared with the nonorthogonal-grid FDTD

for computing the resonant frequencies of cylindrical cav-

ities. It will be shown that the results from the nonor-

thogonal grid converge much faster than those from the

staircase grid. Section IV shows some results of the res-

onant frequency computation of two different types of di-

electric-loaded cylindrical cavitieg and compares them

both with those published in the literature as well as de-

rived by using an FEM code.

II. THEORY

A nonorthogonal FDTD algorithm [1], [2] in combi-

nation with the FFT [7] was used to compute the resonant

frequencies of cylindrical cavities. For a good discussion

on nonorthogonal coordinate systems consult references

[8], [9]. The nonorthogonal FDTD algorithm was for-

mulated using the covariant and contravariant compo-

nents of the electric and magnetic fields as the unknown

variables [1], [2]. In this technique, the integral form of

Maxwell’s Equations are discretized over the nonor-

thogonal unit cell shown in Fig. 1. The resulting differ-
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Fig. 1. Typical unit cell for the nonorthogonal lattice.

ence equations for the electric and magnetic fields are
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where the i and j components of the electric and magnetic

fields are given by index permutation. In addition to (1)

and (2), the covariant components need to be computed

from the corresponding contravariant components. For

example, the covariant compone~t, e~, is obtained from

the contravariant components of E by the equation

ek(z, J, K)
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where gt~ are the metrical coefficients. Similar expres-

sions exist for the i and j covanant comp~rtents of ~ and

the i, j and k covariant components of H [1]. With this

formulation, the number of computations are approxi-

mately twice that of the Cartesian based FDTD, due to

the need to convert back and forth between the contra-

variant and covariant components. However, it is antici-

pated that the ability to conform the mesh to the geometry

of the problem will offset this additional computational

time when the technique is applied to complicated strttc-

tures.

To accurately model the geometry of the resonator, the

nonorthogonal mesh must be molded to the particular

structure under study. This requires a flexible mesh gen-

erator, capable of producing a lattice made of arbitrarily

shaped unit cells as shown in Fig. 1. We are experiment-

ing with the commercial mesh generator, PATRAN [10],

for constructing suitable grids for the nonorthogonal

FDTD algorithm. For the purposes of this work, how-

ever, we wrote a computer program for producing non-

orthogonal meshes of the cylindrical cavities.

For stability, the time step must satisfy the criterion

[2] :

At<!
1

r

(4)
c

i g’”
l,m= 1

where

h
g =ii’”iim (5)

III. CONVERGENCE STUDY

To determine whether the nonorthogonal FDTD is ac-

tually an improvement over the conventional FDTD al-

gorithm for modeling curyed structures, a convergence

study was performed. From the theory of finite-difference

equations, it is well-known that the convergence of the

solution of the central-differencing scheme, which is em-

ployed in the present work, is on the order of hz, where h

is the dimension of a cell in a uniform rectangular mesh

[1 1]. For a rectangular structure, the nonorthogonal grid

is equivalent to the conventional orthogonal mesh so the

rate of convergence will be the same. However, for a non-

rectangular object, the nonorthogonal grid conforms to the

structure, and the convergence rate is significantly better

than that obtainable with the conventional staircase-FDTD

technique for the same structure.

To compare the convergence rate of the nonorthogonal

FDTD with that of the staircase FDTD, the dominant res-

onant frequency of an empty cylindrical cavity was com-

puted. A cavity 1 m. in height with a 1 m. radius was

used to avoid the occurrence of any degenerate modes at

the fundamental resonant frequency, which was 0.1149

GHz. For the convergence study, the cylindrical cavity

was initially meshed with the coarse nonorthogonal grid

as shown in Fig. 2. The cavity was excited with Gaussian

pulses placed at three adjacent electric field components.
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Fig. 2. Sparse anddense nonofihogonal grids forthe cylindrical cavity.

Three components of the electric field were sampled, and

then the FFT was taken of the time domain field samples,

and the dominant resonant frequency was obtained from

the result. (Since the dominant mode is the only one that

we were interested in, we could have just excited and ob-

served the axial component of the electric field. ) The non-

orthogonal mesh was, refined several times, and the dom-

inant resonant frequency computed for each case. The

most coarse and most dense grids are shown in Fig. 2. A

similar process was used with the conventional FDTD

method to compute the dominant resonant frequency of

the cavity, the only difference being that a staircase ap-

proximation of the cylindrical cavity was used. The most

coarse and most dense staircase grids are shown in Fig.

3.

Fig. 4 shows the results of the study. The logarithm of

the error is plotted as the logarithm of the cell size, h,

since the error for the staircase approximation is propor-

tional to a power of h. The error is the difference between

the analytical and respective numerical values of the dom-

inant resonant frequency, and it is normalized to the an-

alytical resonant frequency. We note from the graph in

Fig, 4 that the staircming FDTD algorithm yields a linear

curve for the logarithm of the error versus the logarithm

of the cell size. As the mesh density increases, the error

in the result decreases approximately as hl “s. The power

of h is less than 2 because the staircase grid is being used

to model a non-rectangular geometry. On the other hand,

the nonorthogonal-FDTD method converges in a nonlin-

ear fashion. Not only is, the convergence error of the non-

orthogonal-FDTD mesh lower than that of the conven-

tional FDTD mesh, but its rate of convergence increases

with increasing mesh density. The nonorthogonal FDTD

is significantly more accurate for equivalent mesh densi-

ties than the uniform FDTD in computing the resonant

frequencies of cylindrical cavities. Even though the al-

gorithm takes more time and memory than the conven-

tional FDTD algorithm, its significantly greater rate of

convergence over the conventional FDTD for non-rectan-

gular structures can offset this disadvantage.

IV. DIELECTRIC FILLED CAVITY RESULTS

The lower resonant frequencies of a cylindrical cavity

filled with a dielectric rod, Fig. 5, and a dielectric disk,

Fig. 6, were computed and compared with results ob-

tained from a finite element method [12] and reference

@

Fig. 3. Sparse and dense staircase grids for the cylindrical cavity.

‘:1.4 -1.2 -1 -0.8 -0.6-0.4-0.2 0 0.2

In(h)

Fig. 4. A comparison of the convergence rates of the conventional FDTD
method with a staircase grid and the nonorthogonal FDTD technique with
a grid formed to the cylinder.

1
Fig. 5. Cylindrical cavity with a dielectric rod filling. (a = 1.00076 cm.,

b = 1.27 cm., L = 1.397 cm., e, = 37.6)

b
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Fig. 6. Cylindrical cavity with a dielectric disk filling. (a = 0.8636 cm.,
b = 1.295 cm., H = 0.762 cm., L1 = L2 = 0.381 cm., e, = 35.74).

[13]. The nonorthogonal-FDTD-FFT method was used to

solve for the resonant frequencies in the following man-

ner. In both cases, the mesh was chosen to conform to the

shape of the cylinder and the dielectric filling, while the
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Fig. 7. Nonorthogonal grid for the cylinder with a dielectric rod filling.

mesh density was varied from a high concentration within

the dielectric regions, since the majority of the fields are

located there, to a low density in the air regions. A cross

section of the mesh for the cylindrical cavity with the di-

electric rod is shown in Fig. 7. Notice that although the

mesh density is not very high, the discretized model still

provides a good approximation to the cylindrical shape.

It is also evident that the staircase mesh would need many

more cells to achieve a similar modeling accuracy. The

source for exciting the modes consisted of two loops of

electric field components, viz., one in the axial and the

other in the azimuthal direction, energized with the same

Gaussian pulse in time. In this way, many modes could

be excited while reducing the possibility of introducing

fictitious non-divergence-free field components. The

Gaussian pulse bandwidth was fixed at 4 GHz, providing

sufficient energy over the frequency spectrum of interest.

Axial and transverse electric field components were sam-

pled at several points within the cavities to provide a

means of checking the resonant frequencies. After com-

puting the time signatures of these field components, the

FFT was used to compute the frequency response from

which the modes were extracted.

A time signature and the frequency responses of the

electric field sampled within the cylinder filled with the

dielectric rod are shown in Figures 8a through 8c. These

results were computed using a chosen frequency resolu-

tion of less than 0.1 GHz and 16,384 time steps. The

comparison of our results with those obtained with an

FEM program, as well as those that have been published

in the literature are shown in Table I. The frequency res-

olution of 0.1 GHz is sufficient to distinguish all but the

TMO 11 and HE211 modes which differ by at most 0.6 %.

To resolve these modes, the resolution would need to be

reduced to at least 0.01 GHz, requiring approximately 164

000 time steps and an extensive amount of cpu time and

computer memory. Thus, the nonorthogonal-FDTD al-

gorithm in combination with the FFT is not an efficient

means of distinguishing two closely-spaced modes.

Nevertheless, the resonant frequencies computed with the

nonorthogonal FDTD-FFT method agree with both FEM

results to within a 2.5 YO difference.

Table 11 compares the resonant frequencies obtained

with the nonorthogonal FDTD-FFT technique to those

obtained from [12] and a FEM method [13] for the cavity

with the dielectric disk, shown in Fig. 6. The modes were
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Fig. 8. (a) The time signature of an Ez component of the electric field at

a point within the dielectric for the cylinder loaded with the dielectric rod.

(b) The Fourier transform of an Ez field component within the dielectrl~
for the cylinder loaded with the dielectric rod. (c) The Fourier transform

of an Ex and Ey field component within the dielectric for the cylinder loaded
with a dielectric rod.

TABLE I
COMPARISONOF THE LOWER ORDER RESONANT FREQUENCIES FOR THE

CYLINDRICAL CAVITY WITH A DIELECTRIC ROD FILLING (c, = 37.6, a =
1.00076 cm. b = 1.27 cm, L = 1.397 cm)

Nonorthogonal

Mode Ref. [12] FEM [13] FDTD

(GHz) (GHz) (GHz)

1.50 1.47
2.44 2.38

HE1l 2.49 2.50 2.48

TMO11 3.38 3.38 3.38

HE21 1 3.40 3.38 3.38

HE121 3.81 3.83 3.79

extracted from the frequency spectrums given in Fig. 9(a)

and (b). Considering that these results were obtained us-

ing a mesh density of 10 cells per wavelength at 3.1 GHz

and that the computed resonant frequencies are above 3.4

GHz, it is surprising that the percentage difference be-

tween the nonorthogonal-FDTD results and the others is

on the order of 1.5 % –4. 6 % and not much greater. In other
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TABLE II
COMPARISON OF THE LOWER ORDER RESONANT FREQUENCIES FOR THE

CYLINDRICAL CAVITY WITH ADIELECTRIC DISK FILLING (e,= 35.74, a =

0.8636 cm, b = 1.295 cm, H=0.762cm, Ll =L2 =0.381 cm)

Nonorthogonal
Ref. ’12] FEM [13] FDTD % Difference

Mode (GHz) (GHz) (GHz) (Ref. [12] & FDTD)

TEO 1 3.44 3.51 3.53 2.9%
HE1l 4.27 4.27 4.17 2.3%
HE12 4.37 4.36 4.53 4.6%
TMO1 4.60 4.54 4.62 1.5%

01234

FREQUENCY (GHz)

(a)

FREQUENCY (GHz)

(b)

Fig. 9. (a) The Fourier transform ofan Ez field component within thedi-

electric for the cylindrical cavity loaded with the dielectric disk. (b) The
Fourier transform of an ,5x and .Ey field component within the dielectric for
the cylindrical cavity Ioadedwith the dielectric disk.

words, even with a sparse mesh density, the nonorthog-

onal-FDTD technique in combination with the FFT pro-

duces results in reasonable agreement with those of the

two different FEM methods for the dielectric-button filled

cylindrical cavity.

We have demonstrated that the nonorthogonal FDTD-

FFT combination can be used to compute the lower order

resonant frequencies of dielectric filled cylinders. It is rel-

atively straight forward to extend the procedure to cavities

with arbitrary fillings and shapes, because one needs only

to reform the mesh and specify the material properties. It

should be pointed out that there are some limitations in

using the time-domain technique for computing very high-

order modes, since one needs to employ a very dense mesh

in order to handle the small wavelengths. This, in turn,

requires extensive computer memory and, since the as-

sociated time step must also be small, a large amount of

computer time as well. Also, for modes that are in close

proximity to each other, many time steps maybe required

to achieve the frequency resolution necessary for distin-

guishing these modes with the FFT. A surprising conclu-

sion of the analysis of the cavity with the dielectric disk

is that the resonant frequencies computed with the non-

orthogonal FDTD-FFT combination are in good agree-

ment with both of the FEM results even though the non-

orthogonal-mesh density is less than 10 cells per

wavelength at the frequencies of interest. More rigorous

analysis however is needed before a nonorthogonal-mesh-

density criteria can be formulated for complicated

geometries.

V. CONCLUSION

In this paper, the nonorthogonal-FDTD technique was

extended to the problem of computing the resonant fre-

quencies of dielectric-filled cylindrical cavities that can

be of arbitrary shape and have arbitra~ fillings. The re-

sults of a convergence study were presented to demon-

strate that, for cylindrical structures, a significant im-

provement in the rate of convergence of the

nonorthogonal-FDTD technique can be achieved over the

conventional FDTD method. In fact, the results of the

convergence study lead us to conclude that this non-

orthogonal approach will always converge faster than the

conventional FDTD for structures with arbitrary shape,

provided the nonorthogonal mesh is free of singularity

problems, and the cells are not overly distored.

As a demonstration of the technique, the lower resonant

frequencies of two dielectric-filled cylindrical cavities

were computed with the nonorthogonal-FDTD technique

and compared with the resonant frequencies obtained from

two different finite element techniques. The comparisons

showed the results of the FDTD technique agreed reason-

ably well with those of the finite element methods, even

when a sparse mesh, viz., less than 10 cells per wave-

length, was used with the FDTJ3.’ It is anticipated that the

nonorthogonal-FDTD results can be improved by using

signal processing techniques other than the FFT. Ideally,

the chosen technique should be able to extract the modes

from the fields comptited over a relatively short time in-

terval as compared with that required for the FFT. Cur-

rently, Proney ’s method is-being investigated as a possi-

ble alternative to the FFT for improving frequency

resolution and reducing the computational time [14].
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